Muscle-specific function of the centronuclear myopathy and Charcot-Marie-Tooth neuropathy-associated dynamin 2 is required for proper lipid metabolism, mitochondria, muscle fibers, neuromuscular junctions and peripheral nerves.
نویسندگان
چکیده
The ubiquitously expressed large GTPase Dynamin 2 (DNM2) plays a critical role in the regulation of intracellular membrane trafficking through its crucial function in membrane fission, particularly in endocytosis. Autosomal-dominant mutations in DNM2 cause tissue-specific human disorders. Different sets of DNM2 mutations are linked to dominant intermediate Charcot-Marie-Tooth neuropathy type B, a motor and sensory neuropathy affecting primarily peripheral nerves, or autosomal-dominant centronuclear myopathy (CNM) presenting with primary damage in skeletal muscles. To understand the underlying disease mechanisms, it is imperative to determine to which degree the primary affected cell types require DNM2. Thus, we used cell type-specific gene ablation to examine the consequences of DNM2 loss in skeletal muscle cells, the major relevant cell type involved in CNM. We found that DNM2 function in skeletal muscle is required for proper mouse development. Skeletal muscle-specific loss of DNM2 causes a reduction in muscle mass and in the numbers of muscle fibers, altered muscle fiber size distributions, irregular neuromuscular junctions (NMJs) and isolated degenerating intramuscular peripheral nerve fibers. Intriguingly, a lack of muscle-expressed DNM2 triggers an increase of lipid droplets (LDs) and mitochondrial defects. We conclude that loss of DNM2 function in skeletal muscles initiates a chain of harmful parallel and serial events, involving dysregulation of LDs and mitochondrial defects within altered muscle fibers, defective NMJs and peripheral nerve degeneration. These findings provide the essential basis for further studies on DNM2 function and malfunction in skeletal muscles in health and disease, potentially including metabolic diseases such as diabetes.
منابع مشابه
Mild Functional Differences of Dynamin 2 Mutations Associated to Centronuclear Myopathy and Charcot-Marie-Tooth Peripheral Neuropathy
The large GTPase dynamin 2 is a key player in membrane and cytoskeletal dynamics mutated in centronuclear myopathy (CNM) and Charcot-Marie Tooth (CMT) neuropathy, two discrete dominant neuromuscular disorders affecting skeletal muscle and peripheral nerves respectively. The molecular basis for the tissue-specific phenotypes observed and the physiopathological mechanisms linked to dynamin 2 muta...
متن کاملDynamin-2 Function and Dysfunction Along the Secretory Pathway
Dynamin-2 is a ubiquitously expressed mechano-GTPase involved in different stages of the secretory pathway. Its most well-known function relates to the scission of nascent vesicles from the plasma membrane during endocytosis; however, it also participates in the formation of new vesicles from the Golgi network, vesicle trafficking, fusion processes and in the regulation of microtubule, and acti...
متن کاملDefective Membrane Remodeling in Neuromuscular Diseases: Insights from Animal Models
Proteins involved in membrane remodeling play an essential role in a plethora of cell functions including endocytosis and intracellular transport. Defects in several of them lead to human diseases. Myotubularins, amphiphysins, and dynamins are all proteins implicated in membrane trafficking and/or remodeling. Mutations in myotubularin, amphiphysin 2 (BIN1), and dynamin 2 lead to different forms...
متن کاملDynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation.
Skeletal muscle requires adequate membrane trafficking and remodeling to maintain its normal structure and functions. Consequently, many human myopathies are caused by mutations in membrane trafficking machinery. The large GTPase dynamin-2 (Dyn2) is best known for catalyzing membrane fission during clathrin-mediated endocytosis (CME), which is critical for cell signaling and survival. Despite i...
متن کاملMice Hemizygous for a Pathogenic Mitofusin-2 Allele Exhibit Hind Limb/Foot Gait Deficits and Phenotypic Perturbations in Nerve and Muscle
Charcot-Marie-Tooth disease type 2A (CMT2A), the most common axonal form of hereditary sensory motor neuropathy, is caused by mutations of mitofusin-2 (MFN2). Mitofusin-2 is a GTPase required for fusion of mitochondrial outer membranes, repair of damaged mitochondria, efficient mitochondrial energetics, regulation of mitochondrial-endoplasmic reticulum calcium coupling and axonal transport of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 22 21 شماره
صفحات -
تاریخ انتشار 2013